کاربرد شبکه های عصبی مصنوعی در مدل سازی احیاء فتوکاتالیزوری Cr(VI) توسط نانوذرات تیتانیوم دی‌ اکسید: بهینه‌سازی ساختار شبکه عصبی مصنوعی

Authors

  • بهنژادی, محمدعلی گروه شیمی، دانشکده علوم پایه، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
  • صابونیان, مریم گروه شیمی، دانشکده علوم پایه، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
Abstract:

Background and Objective: Chromium is present in two oxidation forms of Cr(III) and Cr(VI). Cr(III) is less toxic than Cr(VI). The aim of this article was to optimize an artificial neural network structure in modeling the photocatalytic reduction of Cr(VI) by TiO2-P25 nanoparticles. Materials and Methods: In this work, an artificial neural network (ANN) for the modeling photocatalytic reduction Cr(VI) by TiO2-P25 nanoparticles were used and its structure was optimized. The operating parameters were initial concentration of chromium, amount of photocatalyst, ultraviolet light irradiation time and pH. All the experiments were conducted in a batch photoreactor. The Cr(VI) concentration was measured with a UV/Vis spectrophotometer. ANN calculations were performed using Matlab 7 software and the ANN toolbox. Results: The results show that the optimization of the ANN structure and the use of an appropriate algorithm and transfer function could significantly improve performance. The proposed neural network in modeling the photoactivity of TiO2-P25 nanoparticles in reducing Cr(VI) was acceptable, based on a good correlation coefficient (0.9886) and a small mean square error (0.00018). All the input variables affected the reduction of Cr(VI), however the effect of pH with an impact factor of 34.15 % was more significant than the others. The results indicated that pH = 2 was the best pH for photocatalytic reduction of Cr(VI). Increasing photocatalyst dosage and irradiation time in the investigated range increased Cr(VI) photocatalytic reduction. Conclusion: Optimized structure of the ANN includes a three-layer feed-forward back propagation network with 4:10:1 topology and the most appropriate algorithm is a scaled conjugate gradient backpropagation algorithm.  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

کاربرد شبکه عصبی مصنوعی در حسابرسی

چکیده بسیاری از فرآیندهای حسابرسی به سرعت در حال تغییرند. یکی از مسایل مهم حسابرسی این است که چگونه فناوری اطلاعات بر فرآیند حسابرسی ومهارت‏های حسابرسی تأثیر می‏گذارد. حسابرسان باید از آمادگی‏های لازم برای فعالیت در این محیط جدید برخورار باشند. یافته‏های تازه در قلمرو فناوری اطلاعات و ارتباطات، حسابرسان را در نظارت و کنترل عملیات شرکت صاحب‎کار یاری می‏رسانند از جمله امکاناتی که در این محیط جدید...

full text

کاربرد مدل شبکه عصبی مصنوعی در پهنه‌بندی خطر زمین‌لغزش

ین‌لغزش به­عنوان یکی از مخاطرات طبیعی در مناطق کوهستانی محسوب می‌شود که هر ساله منجر به خسارات زیادی می‌شود. حوضه آبریز دوآب الشتر با داشتن چهره‌ای کوهستانی و مرتفع و شرایط طبیعی مختلف دارای استعداد بالقوه زمین‌لغزش است. هدف از این تحقیق پهنه‌بندی خطر زمین‌لغزش با استفاده از مدل شبکه عصبی مصنوعی در حوضه دوآب الشتر می‌باشد. بدین منظور ابتدا پزمارامترهای مؤثر در وقوع زمین‌لغزش استخراج و سپس لایه‌...

full text

کاربرد شبکه های عصبی مصنوعی در تصمیم گیری راهبردی

در این مقاله سعی شده است علاوه بر ارایه مطالب جدید در زمینه شبکه های عصبی مصنوعی، کاربرد آن در تصمیم گیری راهبردی مدیران ارایه شود. در اینجا شبکه های عصبی مصنوعی برای اجرای یک مدول تصمیم در چارچوب تصمیم گیری راهبردی مورد بررسی قرار گرفته است. این مقاله چگونگی بکارگیری و پذیرش شبکه های عصبی در چارچوب تصمیم گیری راهبردی را توصیف می کند. در بخش اول مختصری از ادبیات شبکه های عصبی مصنوعی و در بخش دو...

full text

کاربرد شبکه های عصبی مصنوعی در پیش بینی بارش زمستانه

پیش‌بینی بارش یکی از مهم‌ترین مسائل در زمینه مدیریت بهینه منابع آب در بخش‌های مختلف نظیر صنعت، شرب و کشاورزی است. پیش بینی بارش می تواند باعث جلوگیری از تلفات و خسارات ناشی از بلایای طبیعی شود. هدف از تحقیق حاضر پیش‌بینی بارش زمستانه استان خراسان رضوی با استفاده از شبکه‌های عصبی مصنوعی می‌باشد. بدین منظور، ابتدا سری زمانی بارش متوسط منطقه‌ای به روش کریجینگ در طول دوره آماری به دست آورده شد. سپس...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 11  issue 2

pages  183- 196

publication date 2018-09

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023